Applications of Orders with Involution

Arseniy (Senia) Sheydvasser

March 2, 2019

(Searching for) Applications of Orders with Involution

Arseniy (Senia) Sheydvasser

March 2, 2019

Introduction

 $\mathsf{M\ddot{o}b}(\mathbb{R}^n)$: group generated by sphere inversions in \mathbb{R}^n $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)$: subgroup of orientation-preserving transformations

Introduction

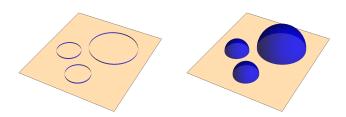
```
\mathsf{M\ddot{o}b}(\mathbb{R}^n): group generated by sphere inversions in \mathbb{R}^n \mathsf{M\ddot{o}b}^0(\mathbb{R}^n): subgroup of orientation-preserving transformations \mathsf{Isom}(\mathbb{H}^n): isometry group of hyperbolic n-space \mathbb{H}^n \mathsf{Isom}^0(\mathbb{H}^n): subgroup of orientation-preserving transformations
```

Introduction

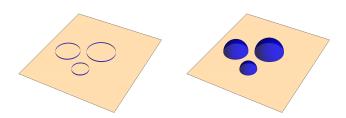
```
\mathsf{M\ddot{o}b}(\mathbb{R}^n): group generated by sphere inversions in \mathbb{R}^n \mathsf{M\ddot{o}b}^0(\mathbb{R}^n): subgroup of orientation-preserving transformations \mathsf{Isom}(\mathbb{H}^n): isometry group of hyperbolic n-space \mathbb{H}^n \mathsf{Isom}^0(\mathbb{H}^n): subgroup of orientation-preserving transformations
```

$$\mathsf{M\ddot{o}b}(\mathbb{R}^n)\cong\mathsf{Isom}(\mathbb{H}^{n+1})$$
 $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)\cong\mathsf{Isom}^0(\mathbb{H}^{n+1})$

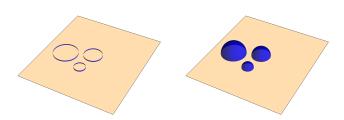
$$\mathsf{M\ddot{o}b}(\mathbb{R}^n)\cong\mathsf{Isom}(\mathbb{H}^{n+1})$$
 $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)\cong\mathsf{Isom}^0(\mathbb{H}^{n+1})$



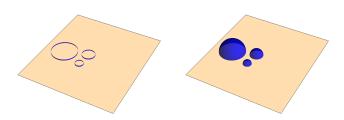
$$\mathsf{M\ddot{o}b}(\mathbb{R}^n)\cong\mathsf{Isom}(\mathbb{H}^{n+1})$$
 $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)\cong\mathsf{Isom}^0(\mathbb{H}^{n+1})$



$$\mathsf{M\ddot{o}b}(\mathbb{R}^n)\cong\mathsf{Isom}(\mathbb{H}^{n+1})$$
 $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)\cong\mathsf{Isom}^0(\mathbb{H}^{n+1})$



$$\mathsf{M\ddot{o}b}(\mathbb{R}^n)\cong\mathsf{Isom}(\mathbb{H}^{n+1})$$
 $\mathsf{M\ddot{o}b}^0(\mathbb{R}^n)\cong\mathsf{Isom}^0(\mathbb{H}^{n+1})$



$Isom^0(\mathbb{H}^2)$	$M\ddot{ob^0}(\mathbb{R})$
$Isom^0(\mathbb{H}^3)$	$M\ddot{ob}^0(\mathbb{R}^2)$
$Isom^0(\mathbb{H}^4)$	$M\ddot{ob^0}(\mathbb{R}^3)$
$Isom^0(\mathbb{H}^5)$	$M\ddot{ob^0}(\mathbb{R}^4)$
:	:

$Isom^0(\mathbb{H}^2)$	$M\ddot{ob}^0(\mathbb{R})$	$SL(2,\mathbb{R})/\{\pm 1\}$
$Isom^0(\mathbb{H}^3)$	$M\ddot{ob}^0(\mathbb{R}^2)$	
$Isom^0(\mathbb{H}^4)$	$M\ddot{ob^0}(\mathbb{R}^3)$	
$Isom^0(\mathbb{H}^5)$	$M\ddot{ob^0}(\mathbb{R}^4)$	
:	:	

$Isom^0(\mathbb{H}^2)$	$M\ddot{ob}^0(\mathbb{R})$	$oxed{\mathit{SL}(2,\mathbb{R})/\{\pm 1\}}$
$Isom^0(\mathbb{H}^3)$	$M\ddot{ob}^0(\mathbb{R}^2)$	$SL(2,\mathbb{C})/\{\pm 1\}$
$Isom^0(\mathbb{H}^4)$	$M\ddot{ob^0}(\mathbb{R}^3)$	
$Isom^0(\mathbb{H}^5)$	$M\ddot{ob^0}(\mathbb{R}^4)$	
:	:	

$Isom^0(\mathbb{H}^2)$	$M\ddot{ob}^0(\mathbb{R})$	$SL(2,\mathbb{R})/\{\pm 1\}$
$Isom^0(\mathbb{H}^3)$	$M\ddot{ob}^0(\mathbb{R}^2)$	$SL(2,\mathbb{C})/\{\pm 1\}$
$Isom^0(\mathbb{H}^4)$	$M\ddot{ob^0}(\mathbb{R}^3)$	
$Isom^0(\mathbb{H}^5)$	$M\ddot{ob^0}(\mathbb{R}^4)$	$SL(2,H_{\mathbb{R}})/\{\pm 1\}$
:	:	

$Isom^0(\mathbb{H}^2)$	$M\ddot{ob}^0(\mathbb{R})$	$SL(2,\mathbb{R})/\{\pm 1\}$
$Isom^0(\mathbb{H}^3)$	$M\ddot{ob}^0(\mathbb{R}^2)$	$SL(2,\mathbb{C})/\{\pm 1\}$
$Isom^0(\mathbb{H}^4)$	$M\ddot{ob^0}(\mathbb{R}^3)$???
$Isom^0(\mathbb{H}^5)$	$M\ddot{ob}^0(\mathbb{R}^4)$	$SL(2,H_{\mathbb{R}})/\{\pm 1\}$
<u>:</u>	:	???

Vahlen, 1901: For any n, there is an isomorphism between $\text{M\"ob}^0(\mathbb{R}^n)$ and a group of 2×2 matrices with entries in a (subset of a) Clifford algebra, quotiented by $\{\pm 1\}$.

- ▶ Vahlen, 1901: For any n, there is an isomorphism between $\text{M\"ob}^0(\mathbb{R}^n)$ and a group of 2×2 matrices with entries in a (subset of a) Clifford algebra, quotiented by $\{\pm 1\}$.
- ▶ We'll consider the case n = 3, $\text{M\"ob}^0(\mathbb{R}^3)$.

- ▶ Vahlen, 1901: For any n, there is an isomorphism between $\text{M\"ob}^0(\mathbb{R}^n)$ and a group of 2×2 matrices with entries in a (subset of a) Clifford algebra, quotiented by $\{\pm 1\}$.
- ▶ We'll consider the case n = 3, Möb⁰(\mathbb{R}^3).
- Define

$$(w + xi + yj + zk)^{\ddagger} = w + xi + yj - zk$$

and $H_{\mathbb{R}}^+$ = quaternions fixed by ‡ (i.e. with no k-component).

- Vahlen, 1901: For any n, there is an isomorphism between $\text{M\"ob}^0(\mathbb{R}^n)$ and a group of 2×2 matrices with entries in a (subset of a) Clifford algebra, quotiented by $\{\pm 1\}$.
- ▶ We'll consider the case n = 3, Möb⁰(\mathbb{R}^3).
- Define

$$(w + xi + yj + zk)^{\ddagger} = w + xi + yj - zk$$

and $H_{\mathbb{R}}^+$ = quaternions fixed by ‡ (i.e. with no k-component).

$$SL^{\ddagger}(2,\mathcal{H}_{\mathbb{R}}) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathsf{Mat}(2,\mathcal{H}_{\mathbb{R}}) \middle| \mathsf{a} b^{\ddagger}, \mathsf{c} d^{\ddagger} \in \mathcal{H}_{\mathbb{R}}^{+}, \mathsf{a} d^{\ddagger} - b c^{\ddagger} = 1
ight\} \ SL^{\ddagger}(2,\mathcal{H}_{\mathbb{R}})/\{\pm 1\} \cong \mathsf{M\"ob}^{0}(\mathbb{R}^{3})$$

$$SL^{\ddagger}(2, H_{\mathbb{R}}) = \left\{ egin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \middle| \mathsf{a} \mathsf{b}^{\ddagger}, \mathsf{c} \mathsf{d}^{\ddagger} \in H_{\mathbb{R}}^{+}, \mathsf{a} \mathsf{d}^{\ddagger} - \mathsf{b} \mathsf{c}^{\ddagger} = 1
ight\}$$

$$\mathit{SL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) = \left\{ egin{pmatrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{pmatrix} \middle| \mathsf{ab}^{\ddagger}, \mathsf{cd}^{\ddagger} \in \mathit{H}_{\mathbb{R}}^{+}, \mathsf{ad}^{\ddagger} - \mathsf{bc}^{\ddagger} = 1
ight\}$$

Equivalently,

$$SL^{\ddagger}(2, H_{\mathbb{R}}) = \left\{ \gamma \in SL(2, H_{\mathbb{R}}) \middle| \gamma \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \overline{\gamma}^{T} = \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \right\}$$

$$\mathit{SL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) = \left\{ egin{pmatrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{pmatrix} \middle| \mathsf{ab}^{\ddagger}, \mathsf{cd}^{\ddagger} \in \mathit{H}_{\mathbb{R}}^{+}, \mathsf{ad}^{\ddagger} - \mathsf{bc}^{\ddagger} = 1
ight\}$$

Equivalently,

$$SL^{\ddagger}(2, H_{\mathbb{R}}) = \left\{ \gamma \in SL(2, H_{\mathbb{R}}) \middle| \gamma \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \overline{\gamma}^{T} = \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \right\}$$

Inverses are given as follows:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}$$

$$\mathit{SL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) = \left\{ egin{pmatrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{pmatrix} \middle| \mathsf{ab}^{\ddagger}, \mathsf{cd}^{\ddagger} \in \mathit{H}_{\mathbb{R}}^{+}, \mathsf{ad}^{\ddagger} - \mathsf{bc}^{\ddagger} = 1
ight\}$$

Equivalently,

$$SL^{\ddagger}(2, H_{\mathbb{R}}) = \left\{ \gamma \in SL(2, H_{\mathbb{R}}) \middle| \gamma \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \overline{\gamma}^{T} = \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \right\}$$

Inverses are given as follows:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}$$

Action on $\mathbb{R}^3 \cup \{\infty\} = H^+_{\mathbb{R}} \cup \{\infty\}$ defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = (az + b)(cz + d)^{-1}$$

Another Classical Isomorphism

▶ For any n, $\mathsf{M\"ob}^0(\mathbb{R}^n) \cong \mathsf{Isom}^0(\mathbb{H}^{n+1}) \cong SO^0(n+1,1)$.

Another Classical Isomorphism

- For any n, $\mathsf{M\"ob}^0(\mathbb{R}^n) \cong \mathsf{Isom}^0(\mathbb{H}^{n+1}) \cong SO^0(n+1,1)$.
- ▶ Using Vahlen matrices, we can give a neat proof.

$$(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \leftrightarrow \begin{pmatrix} x_1 + x_2 & x_3 + x_4 i + x_5 j \\ x_3 - x_4 i - x_5 j & x_1 - x_2 \end{pmatrix} = M \in \mathbb{R} \ltimes SL^{\ddagger}(2, H_{\mathbb{R}})$$

$$(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \leftrightarrow \begin{pmatrix} x_1 + x_2 & x_3 + x_4 i + x_5 j \\ x_3 - x_4 i - x_5 j & x_1 - x_2 \end{pmatrix} = M \in \mathbb{R} \ltimes SL^{\ddagger}(2, H_{\mathbb{R}})$$

$$x_1^2 - x_2^2 - x_3^2 - x_4^2 - x_5^2 = \det^{\ddagger}(M)$$

- $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \leftrightarrow \begin{pmatrix} x_1 + x_2 & x_3 + x_4 i + x_5 j \\ x_3 x_4 i x_5 j & x_1 x_2 \end{pmatrix} = M \in \mathbb{R} \ltimes SL^{\ddagger}(2, H_{\mathbb{R}})$
- $x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 = \det^{\ddagger}(M)$
- We have an action which preserves the quasi-determinant

$$M \mapsto \gamma M \overline{\gamma}^T \ \ (\forall \gamma \in SL^{\ddagger}(2, H_{\mathbb{R}}))$$

- $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \leftrightarrow \begin{pmatrix} x_1 + x_2 & x_3 + x_4 i + x_5 j \\ x_3 x_4 i x_5 j & x_1 x_2 \end{pmatrix} = M \in \mathbb{R} \ltimes SL^{\ddagger}(2, H_{\mathbb{R}})$
- $x_1^2 x_2^2 x_3^2 x_4^2 x_5^2 = \det^{\ddagger}(M)$
- We have an action which preserves the quasi-determinant

$$M \mapsto \gamma M \overline{\gamma}^T \ \ (\forall \gamma \in SL^{\ddagger}(2, H_{\mathbb{R}}))$$

▶ Thus, we have a map $SL^{\ddagger}(2, H_{\mathbb{R}}) \rightarrow SO(4, 1)$.

Sketch of Proof of Isomorphism, Part II

- Easy to check that
 - ▶ The kernel is $\{\pm 1\}$.
 - ► $SL^{\ddagger}(2, H_{\mathbb{R}})$ is connected, so its image is connected.
 - $\blacktriangleright \dim(SL^{\ddagger}(2, H_{\mathbb{R}})) = \dim(SO(4, 1)).$

Sketch of Proof of Isomorphism, Part II

- Easy to check that
 - ▶ The kernel is $\{\pm 1\}$.
 - ► $SL^{\ddagger}(2, H_{\mathbb{R}})$ is connected, so its image is connected.
- ▶ Therefore, $SL^{\ddagger}(2, H_{\mathbb{R}})/\{\pm 1\} \cong SO^{0}(4, 1)$.

Sketch of Proof of Isomorphism, Part II

- Easy to check that
 - ▶ The kernel is $\{\pm 1\}$.
 - ► $SL^{\ddagger}(2, H_{\mathbb{R}})$ is connected, so its image is connected.
 - $ightharpoonup \dim(SL^{\ddagger}(2, H_{\mathbb{R}})) = \dim(SO(4, 1)).$
- ▶ Therefore, $SL^{\ddagger}(2, H_{\mathbb{R}})/\{\pm 1\} \cong SO^{0}(4, 1)$.
- ▶ Equivalently, $SL^{\ddagger}(2, H_{\mathbb{R}}) \cong Spin(4, 1)$.

▶ We don't have to work over \mathbb{R} . Let F be any field of characteristic $\neq 2$.

- ▶ We don't have to work over \mathbb{R} . Let F be any field of characteristic $\neq 2$.
- Let H be a quaternion algebra over F. That is, for some $a, b \in F^{\times}$,

$$H \cong \left(\frac{a,b}{F}\right)$$

► This is the *F*-algebra generated by i, j, where $i^2 = a$, $j^2 = b$, ij = -ji.

- ▶ We don't have to work over \mathbb{R} . Let F be any field of characteristic $\neq 2$.
- Let H be a quaternion algebra over F. That is, for some $a, b \in F^{\times}$,

$$H \cong \left(\frac{a,b}{F}\right)$$

- ► This is the *F*-algebra generated by i, j, where $i^2 = a$, $j^2 = b$, ij = -ji.
- ▶ All elements of H look like w + xi + yj + zij.

- ▶ We don't have to work over \mathbb{R} . Let F be any field of characteristic $\neq 2$.
- Let H be a quaternion algebra over F. That is, for some $a, b \in F^{\times}$,

$$H \cong \left(\frac{a,b}{F}\right)$$

- ► This is the *F*-algebra generated by i, j, where $i^2 = a$, $j^2 = b$, ij = -ji.
- ▶ All elements of H look like w + xi + yj + zij.
- ▶ The standard quaternions are just $\left(\frac{-1,-1}{\mathbb{R}}\right)$.

- ▶ We don't have to work over \mathbb{R} . Let F be any field of characteristic $\neq 2$.
- Let H be a quaternion algebra over F. That is, for some $a, b \in F^{\times}$,

$$H \cong \left(\frac{a,b}{F}\right)$$

- ► This is the *F*-algebra generated by i, j, where $i^2 = a$, $j^2 = b$, ij = -ji.
- ▶ All elements of H look like w + xi + yj + zij.
- ▶ The standard quaternions are just $\left(\frac{-1,-1}{\mathbb{R}}\right)$.
- ▶ Another standard example: $Mat(2, \mathbb{R}) \cong \left(\frac{1,-1}{\mathbb{R}}\right)$.

- ► All quaternion algebras are either
 - ▶ Isomorphic to Mat(2, F)—we call these *split*, or *unramified*.

- ► All quaternion algebras are either
 - lsomorphic to Mat(2, F)—we call these *split*, or *unramified*.
 - ▶ Division algebras—we call these *ramified*.

- All quaternion algebras are either
 - lsomorphic to Mat(2, F)—we call these *split*, or *unramified*.
 - Division algebras—we call these ramified.
- There are only two kinds of involutions (of the first kind) on quaternion algebras.
 - ▶ The standard involution $\overline{a + bi + cj + dij} = a bi cj dij$.

- All quaternion algebras are either
 - lsomorphic to Mat(2, F)—we call these *split*, or *unramified*.
 - Division algebras—we call these ramified.
- ► There are only two kinds of involutions (of the first kind) on quaternion algebras.
 - ▶ The standard involution $a + \overline{bi + cj + dij} = a bi cj dij$.
 - Orthogonal involutions, which are all conjugate to one another—so, without loss of generality $(a + bi + cj + dij)^{\ddagger} = a + bi + cj dij$.

- All quaternion algebras are either
 - ▶ Isomorphic to Mat(2, F)—we call these *split*, or *unramified*.
 - Division algebras—we call these ramified.
- There are only two kinds of involutions (of the first kind) on quaternion algebras.
 - ► The standard involution $a + \overline{bi + cj + dij} = a bi cj dij$.
 - ▶ Orthogonal involutions, which are all conjugate to one another—so, without loss of generality $(a + bi + cj + dij)^{\ddagger} = a + bi + cj dij$.
- **b** By an involution (of the first kind) I mean an F-linear map $\varphi: H \to H$ such that

Algebraic Groups

► For a field *F* an quaternion algebra *H* with orthogonal involution ‡, we define an algebraic group

$$\mathit{SL}^{\ddagger}(2,H) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \middle| \mathit{ab}^{\ddagger}, \mathit{cd}^{\ddagger} \in \mathit{H}^{+}, \mathit{ad}^{\ddagger} - \mathit{bc}^{\ddagger} = 1
ight\}.$$

Algebraic Groups

► For a field *F* an quaternion algebra *H* with orthogonal involution ‡, we define an algebraic group

$$SL^{\ddagger}(2,H)=\left\{egin{pmatrix} a & b \ c & d \end{pmatrix}\middle| ab^{\ddagger},cd^{\ddagger}\in H^{+},ad^{\ddagger}-bc^{\ddagger}=1
ight\}.$$

▶ By essentially the same argument as before, we have an isomorphism $SL^{\ddagger}(2,H)/\{\pm 1\}\cong SO^{0}(q)$, where

$$q: F^2 \times H^+ \to F$$

 $(a, b, \xi) \mapsto a^2 - b^2 - \operatorname{nrm}(\xi)$

Algebraic Groups

► For a field F an quaternion algebra H with orthogonal involution ‡, we define an algebraic group

$$SL^{\ddagger}(2,H)=\left\{egin{pmatrix} a & b \ c & d \end{pmatrix}\middle| ab^{\ddagger},cd^{\ddagger}\in H^{+},ad^{\ddagger}-bc^{\ddagger}=1
ight\}.$$

▶ By essentially the same argument as before, we have an isomorphism $SL^{\ddagger}(2,H)/\{\pm 1\}\cong SO^{0}(q)$, where

$$q: F^2 \times H^+ \to F$$

 $(a, b, \xi) \mapsto a^2 - b^2 - \operatorname{nrm}(\xi)$

▶ Conversely, for any indefinite, quinary quadratic form q, there is an H such that $SL^{\ddagger}(2,H)/\{\pm 1\} \cong SO^{0}(q)$.

- ▶ Let *F* be a local or global field.
 - ► Global—think of algebraic number fields
 - ► Local—think of p-adic fields

- ▶ Let *F* be a local or global field.
 - ► Global—think of algebraic number fields
 - ► Local—think of p-adic fields
- ▶ We have a notion of ring of integers, so we can ask about the integral points on $SL^{\ddagger}(2, H)$ —this depends on how exactly we embed $SL^{\ddagger}(2, H) \rightarrow GL(n, F)$.

- ▶ Let *F* be a local or global field.
 - ► Global—think of algebraic number fields
 - Local—think of p-adic fields
- ▶ We have a notion of ring of integers, so we can ask about the integral points on $SL^{\ddagger}(2, H)$ —this depends on how exactly we embed $SL^{\ddagger}(2, H) \rightarrow GL(n, F)$.
- ▶ One approach: take a subring $R \subset H$ that is also a lattice (i.e. it is an *order*), and consider $SL^{\ddagger}(2, R)$.

- ▶ Let *F* be a local or global field.
 - ► Global—think of algebraic number fields
 - Local—think of p-adic fields
- ▶ We have a notion of ring of integers, so we can ask about the integral points on $SL^{\ddagger}(2, H)$ —this depends on how exactly we embed $SL^{\ddagger}(2, H) \rightarrow GL(n, F)$.
- ▶ One approach: take a subring $R \subset H$ that is also a lattice (i.e. it is an *order*), and consider $SL^{\ddagger}(2, R)$.
- ▶ This works perfectly well for $SL(2,\mathbb{C})$: take the ring of integers \mathcal{O} of an imaginary quadratic field (e.g. $\mathbb{Z}[\sqrt{-2}]$), and define the corresponding Bianchi group $SL(2,\mathcal{O})$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

For $SL^{\ddagger}(2, H)$, there is an obstruction

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

▶ So, we can only consider orders R such that $R^{\ddagger} = R$; otherwise, $SL^{\ddagger}(2,R)$ is not a group.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

- So, we can only consider orders R such that $R^{\ddagger} = R$; otherwise, $SL^{\ddagger}(2,R)$ is not a group.
- ► We'll call these ‡-orders.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

- So, we can only consider orders R such that $R^{\ddagger} = R$; otherwise, $SL^{\ddagger}(2,R)$ is not a group.
- ► We'll call these ‡-orders.
- Winfried Scharlau, 1970's:
 - Try to find maximal orders that are also ‡-orders. (Don't necessarily exist.)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

- So, we can only consider orders R such that $R^{\ddagger} = R$; otherwise, $SL^{\ddagger}(2,R)$ is not a group.
- ► We'll call these ‡-orders.
- Winfried Scharlau, 1970's:
 - Try to find maximal orders that are also ‡-orders. (Don't necessarily exist.)
 - ▶ Try to find ‡-orders that are not contained in other ‡-orders. (We'll call these maximal ‡-orders.)

Examples and non-Examples of Maximal ‡-Orders

Maximal orders:

$$\mathcal{O}_{1} = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2} \subset \left(\frac{-1,-2}{\mathbb{Q}}\right)$$

$$\mathcal{O}_{2} = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z} \frac{5+5i+3j-ij}{10} \subset \left(\frac{-1,-5}{\mathbb{Q}}\right)$$

$$\mathcal{O}_{3} = \mathbb{Z} \oplus 9\mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z} \frac{90+385i-63j+ij}{90} \subset \left(\frac{-1,-5}{\mathbb{Q}}\right)$$

Examples and non-Examples of Maximal ‡-Orders

Maximal orders:

$$\mathcal{O}_{1} = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2} \subset \left(\frac{-1,-2}{\mathbb{Q}}\right)$$

$$\mathcal{O}_{2} = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z} \frac{5+5i+3j-ij}{10} \subset \left(\frac{-1,-5}{\mathbb{Q}}\right)$$

$$\mathcal{O}_{3} = \mathbb{Z} \oplus 9\mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z} \frac{90+385i-63j+ij}{90} \subset \left(\frac{-1,-5}{\mathbb{Q}}\right)$$

$$\begin{split} \mathcal{O}_1 \cap \mathcal{O}_1^{\ddagger} &= \mathcal{O}_1 \\ \mathcal{O}_2 \cap \mathcal{O}_2^{\ddagger} &= \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j+ij}{2} \\ \mathcal{O}_3 \cap \mathcal{O}_3^{\ddagger} &= \mathbb{Z} \oplus 9\mathbb{Z} i \oplus \mathbb{Z} j \oplus 9\mathbb{Z} \frac{1+i+j+ij}{2}. \end{split}$$

► How to test whether a ‡-order is maximal? And can we determine how many maximal ‡-orders in *H* there are?

- ► How to test whether a ‡-order is maximal? And can we determine how many maximal ‡-orders in H there are?
- Need three notions of discriminant:

$$b disc(\mathcal{O}) = (\det(\operatorname{tr}(\overline{x_i}x_j))|x_0, x_1, x_2, x_3 \in \mathcal{O})$$

- ► How to test whether a ‡-order is maximal? And can we determine how many maximal ‡-orders in H there are?
- Need three notions of discriminant:
 - $b disc(\mathcal{O}) = (\det(\operatorname{tr}(\overline{x_i}x_j))|x_0, x_1, x_2, x_3 \in \mathcal{O})$
 - disc(H) = product of places ν such that H_{ν} is ramified

- ► How to test whether a ‡-order is maximal? And can we determine how many maximal ‡-orders in H there are?
- Need three notions of discriminant:
 - $b disc(\mathcal{O}) = (\det(\operatorname{tr}(\overline{x_i}x_j))|x_0, x_1, x_2, x_3 \in \mathcal{O})$
 - disc(H) = product of places ν such that H_{ν} is ramified

- ► How to test whether a ‡-order is maximal? And can we determine how many maximal ‡-orders in H there are?
- Need three notions of discriminant:
 - $b disc(\mathcal{O}) = (\det(\operatorname{tr}(\overline{x_i}x_j))|x_0, x_1, x_2, x_3 \in \mathcal{O})$
 - ▶ disc(H) = product of places ν such that H_{ν} is ramified
 - $b disc(\ddagger) = \left\{ x^2 \middle| x \in H^- \right\} \in F^\times / F^{\times 2}$
- Can turn disc(‡) into square-free ideal in F.

$$\iota: F^{\times}/F^{\times^2} \to \mathsf{IdI}(F)$$
$$[\lambda] \mapsto \bigcup_{\lambda \in [\lambda] \cap \mathfrak{o}} \lambda \mathfrak{o}$$

▶ S. 2018: Over any local or global field F, a ‡-order \mathcal{O} is maximal if and only if $\operatorname{disc}(\mathcal{O}) = (\operatorname{disc}(H) \cap \iota(\operatorname{disc}(\ddagger)))^2$.

- ▶ S. 2018: Over any local or global field F, a ‡-order \mathcal{O} is maximal if and only if $\operatorname{disc}(\mathcal{O}) = (\operatorname{disc}(H) \cap \iota(\operatorname{disc}(\ddagger)))^2$.
- ▶ Let F be a local field, with maximal ideal p.
 - ► If *H* is ramified, then there is only one maximal order (which is also the maximal ‡-order)

- ▶ S. 2018: Over any local or global field F, a ‡-order \mathcal{O} is maximal if and only if $\operatorname{disc}(\mathcal{O}) = (\operatorname{disc}(H) \cap \iota(\operatorname{disc}(\ddagger)))^2$.
- ▶ Let F be a local field, with maximal ideal p.
 - ► If *H* is ramified, then there is only one maximal order (which is also the maximal ‡-order)
 - ▶ If *H* is unramified, then maximal ‡-orders correspond to lattices in a binary quadratic space *V*.

- ▶ S. 2018: Over any local or global field F, a ‡-order \mathcal{O} is maximal if and only if $\operatorname{disc}(\mathcal{O}) = (\operatorname{disc}(H) \cap \iota(\operatorname{disc}(\ddagger)))^2$.
- ▶ Let F be a local field, with maximal ideal p.
 - ► If *H* is ramified, then there is only one maximal order (which is also the maximal ‡-order)
 - ▶ If *H* is unramified, then maximal ‡-orders correspond to lattices in a binary quadratic space *V*.
 - ▶ There are \leq ord_p(2) + 1 isomorphism classes (complicated formula, but still easily computable).

- ▶ S. 2018: Over any local or global field F, a ‡-order \mathcal{O} is maximal if and only if $\operatorname{disc}(\mathcal{O}) = (\operatorname{disc}(H) \cap \iota(\operatorname{disc}(\ddagger)))^2$.
- ▶ Let F be a local field, with maximal ideal p.
 - ► If *H* is ramified, then there is only one maximal order (which is also the maximal ‡-order)
 - ▶ If *H* is unramified, then maximal ‡-orders correspond to lattices in a binary quadratic space *V*.
 - There are $\leq \operatorname{ord}_{\mathfrak{p}}(2) + 1$ isomorphism classes (complicated formula, but still easily computable).
- To get corresponding result for global result, apply localization.

▶ S. preprint: Let $\mathcal{O}_1, \mathcal{O}_2$ be maximal ‡-orders over F. Then $\mathcal{O}_1 \cong \mathcal{O}_2$ if and only if $(\mathcal{O}_1)_{\nu} \cong (\mathcal{O}_2)_{\nu}$ for all places ν of F.

- ▶ S. preprint: Let $\mathcal{O}_1, \mathcal{O}_2$ be maximal ‡-orders over F. Then $\mathcal{O}_1 \cong \mathcal{O}_2$ if and only if $(\mathcal{O}_1)_{\nu} \cong (\mathcal{O}_2)_{\nu}$ for all places ν of F.
- ► Corollary: the number of isomorphism classes is finite.

- ▶ S. preprint: Let $\mathcal{O}_1, \mathcal{O}_2$ be maximal ‡-orders over F. Then $\mathcal{O}_1 \cong \mathcal{O}_2$ if and only if $(\mathcal{O}_1)_{\nu} \cong (\mathcal{O}_2)_{\nu}$ for all places ν of F.
- Corollary: the number of isomorphism classes is finite.
- ▶ In fact, the the number of isomorphism classes over H is the product of the number of isomorphism classes over $H_{\mathfrak{p}}$ for all $\mathfrak{p} \ni 2$.

- ▶ S. preprint: Let $\mathcal{O}_1, \mathcal{O}_2$ be maximal ‡-orders over F. Then $\mathcal{O}_1 \cong \mathcal{O}_2$ if and only if $(\mathcal{O}_1)_{\nu} \cong (\mathcal{O}_2)_{\nu}$ for all places ν of F.
- Corollary: the number of isomorphism classes is finite.
- ▶ In fact, the the number of isomorphism classes over H is the product of the number of isomorphism classes over $H_{\mathfrak{p}}$ for all $\mathfrak{p} \ni 2$.
- Corollary: the number of isomorphism classes over ℚ is either 1 or 2.

Comparison with Other Types of Orders

Maximal Orders	# of Orders	# of Isomorphism Classes
Quadratic fields		
QAs with involution		
QAs		

Comparison with Other Types of Orders

Maximal Orders	# of Orders	# of Isomorphism Classes
Quadratic fields	1	1
QAs with involution		
QAs		

Comparison with Other Types of Orders

Maximal Orders	# of Orders	# of Isomorphism Classes
Quadratic fields	1	1
QAs with involution		
QAs	∞	∞

Comparison with Other Types of Orders

Maximal Orders	# of Orders	# of Isomorphism Classes
Quadratic fields	1	1
QAs with involution	∞	Finite (often 1)
QAs	∞	∞

Comparison with Other Types of Orders

Maximal Orders	# of Orders	# of Isomorphism Classes
Quadratic fields	1	1
QAs with involution	∞	Finite (often 1)
QAs	∞	∞

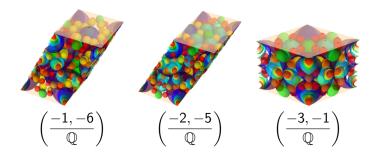
Moral of the story: maximal ‡-orders seem to be exceedingly nice, and criminally understudied.

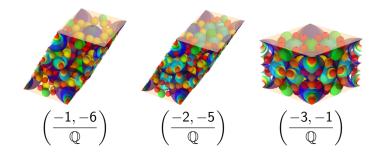
▶ If H is ramified, then $SL^{\ddagger}(2, H)$ has an action on $H^+ \cup \{\infty\}$ via linear fractional transformations.

- ▶ If H is ramified, then $SL^{\ddagger}(2, H)$ has an action on $H^+ \cup \{\infty\}$ via linear fractional transformations.
- ▶ If $H \hookrightarrow H_{\mathbb{R}}$, we can study $SL^{\ddagger}(2, H)$ as a group of hyperbolic isometries.

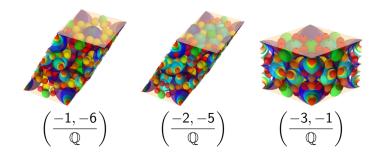
- ▶ If H is ramified, then $SL^{\ddagger}(2, H)$ has an action on $H^+ \cup \{\infty\}$ via linear fractional transformations.
- ▶ If $H \hookrightarrow H_{\mathbb{R}}$, we can study $SL^{\ddagger}(2, H)$ as a group of hyperbolic isometries.
- ▶ If $F = \mathbb{Q}$ and H is ramified, then we can think of $SL^{\ddagger}(2, H)$ as a discrete subgroup of $Isom^{0}(\mathbb{H}^{4})$.

- ▶ If H is ramified, then $SL^{\ddagger}(2, H)$ has an action on $H^+ \cup \{\infty\}$ via linear fractional transformations.
- ▶ If $H \hookrightarrow H_{\mathbb{R}}$, we can study $SL^{\ddagger}(2, H)$ as a group of hyperbolic isometries.
- ▶ If $F = \mathbb{Q}$ and H is ramified, then we can think of $SL^{\ddagger}(2, H)$ as a discrete subgroup of Isom⁰(\mathbb{H}^4).
- Possible way to study $SL^{\ddagger}(2, H)$: fix a plane in \mathbb{R}^3 , and consider the orbit under the action of $SL^{\ddagger}(2, H)$.

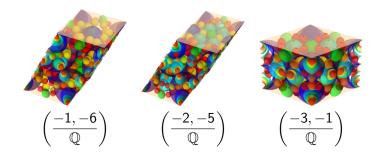




ightharpoonup Can check that the bends (1/radius) are always integers.

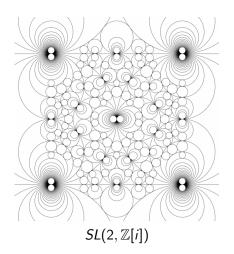


- ightharpoonup Can check that the bends (1/radius) are always integers.
- ▶ Can therefore ask questions about which integers appear.

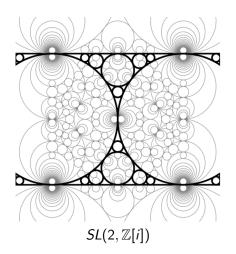


- ightharpoonup Can check that the bends (1/radius) are always integers.
- ▶ Can therefore ask questions about which integers appear.
- ▶ This is easy: use strong approximation for algebraic groups.

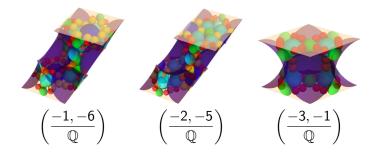
Circle Packings



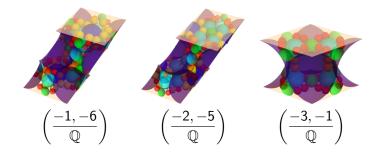
Circle Packings



Apollonian-Like Packings

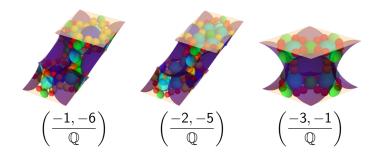


Apollonian-Like Packings



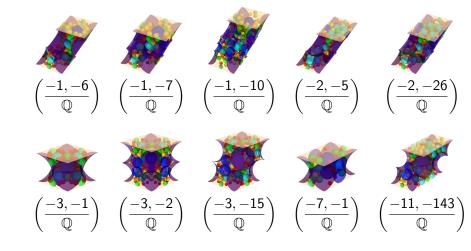
Nontorovich and Nakamura, 2018: Define super-integral crystallographic packings. Any such packing must come from the action of an arithmetic subgroup of $\operatorname{Isom}(\mathbb{H}^n)$ acting on some finite collection of planes.

Apollonian-Like Packings



- Nontorovich and Nakamura, 2018: Define super-integral crystallographic packings. Any such packing must come from the action of an arithmetic subgroup of $\operatorname{Isom}(\mathbb{H}^n)$ acting on some finite collection of planes.
- S., thesis 2018: We can construct super-integral crystallographic packings from maximal ‡-orders. We can even give a partial classification.

Super-Integral Crystallographic Sphere Packings



- ▶ Groups $SL^{\ddagger}(2, \mathcal{O})$ are like Bianchi groups. How far does this analogy stretch?
 - When is $SL^{\ddagger}(2,\mathcal{O})$ generated by elementary matrices? Is there an analog of Cohn's theorem?

- ▶ Groups $SL^{\ddagger}(2, \mathcal{O})$ are like Bianchi groups. How far does this analogy stretch?
 - ▶ When is $SL^{\ddagger}(2, \mathcal{O})$ generated by elementary matrices? Is there an analog of Cohn's theorem?
- ► Can we determine what integers appear as bends in these super-integral crystallographic packings?

- ▶ Groups $SL^{\ddagger}(2, \mathcal{O})$ are like Bianchi groups. How far does this analogy stretch?
 - ▶ When is $SL^{\ddagger}(2, \mathcal{O})$ generated by elementary matrices? Is there an analog of Cohn's theorem?
- Can we determine what integers appear as bends in these super-integral crystallographic packings?
 - Can be attacked via the circle method.

- ▶ Groups $SL^{\ddagger}(2, \mathcal{O})$ are like Bianchi groups. How far does this analogy stretch?
 - When is $SL^{\ddagger}(2,\mathcal{O})$ generated by elementary matrices? Is there an analog of Cohn's theorem?
- Can we determine what integers appear as bends in these super-integral crystallographic packings?
 - Can be attacked via the circle method.
 - Easier for sphere packings. (Known results by Kontorovich, Nakamura, Dias.)