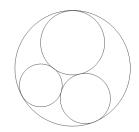
Connections between Integral Sphere Packings and Quaternion Algebras

Arseniy (Senia) Sheydvasser

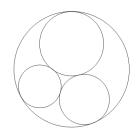
April 16, 2018

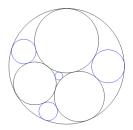
Table of Contents

- Introduction
- Question of the second of t
- Classification Problem
- 4 Accidental Isomorphism
- Maximal ‡-Orders
- 6 Symmetric Heegner Orders
- The Final Classification

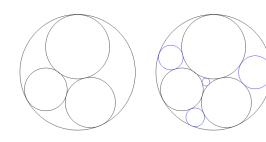


 Problem dates back to Apollonius (~ 200 BCE)

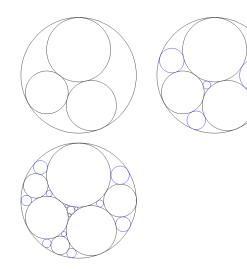




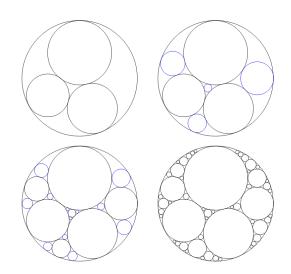
 Problem dates back to Apollonius (~ 200 BCE)



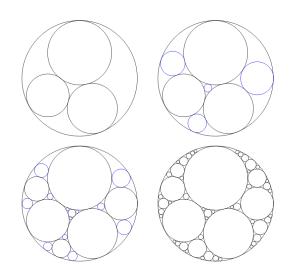
- Problem dates back to Apollonius (~ 200 BCE)
- Rediscovered periodically, with improvements by Viéte, Descartes, and Leibniz.



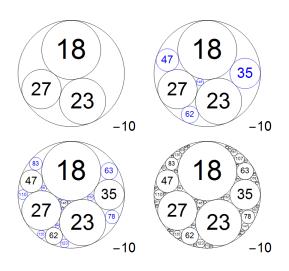
- Problem dates back to Apollonius (~ 200 BCE)
- Rediscovered periodically, with improvements by Viéte, Descartes, and Leibniz.



- Problem dates back to Apollonius (~ 200 BCE)
- Rediscovered periodically, with improvements by Viéte, Descartes, and Leibniz.



- Problem dates back to Apollonius (~ 200 BCE)
- Rediscovered periodically, with improvements by Viéte, Descartes, and Leibniz.
- Soddy, in 1936, notices something interesting.

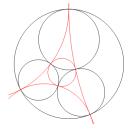


- Problem dates back to Apollonius (~ 200 BCE)
- Rediscovered periodically, with improvements by Viéte, Descartes, and Leibniz.
- Soddy, in 1936, notices something interesting.

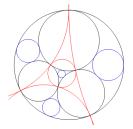
• Q: Why are all bends (1/radius) integers?

- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.

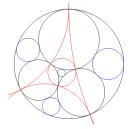
- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.



- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.



- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing. Two characterizations of this group.

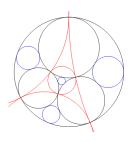


- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.
 Two characterizations of this group.

Acting on quadruples of bends.

- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.

Two characterizations of this group.

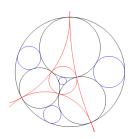


Acting on quadruples of bends.

$$\begin{split} \Gamma = \left\langle \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix} \right\rangle \end{split}$$

- Q: Why are all bends (1/radius) integers?
- A: There is a nice group Γ of "moves" of the packing.

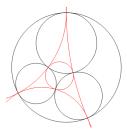
Two characterizations of this group.



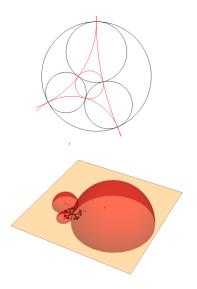
Acting on quadruples of bends.

$$\begin{split} \Gamma = \left\langle \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix} \right\rangle \end{split}$$

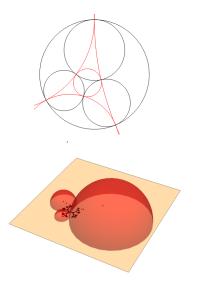
• Subgroup of $\overline{M\ddot{o}b(\mathbb{R}^2)}$.



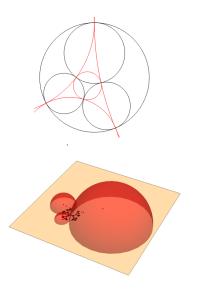
• Can extend the dual circles to spheres.



• Can extend the dual circles to spheres.

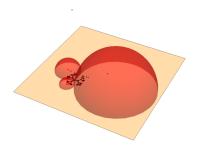


- Can extend the dual circles to spheres.
- Group generators are reflections in hyperbolic upper half-space.



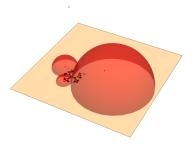
- Can extend the dual circles to spheres.
- Group generators are reflections in hyperbolic upper half-space.
- The closure of the Apollonian circle packing is the limit set of Γ.

Properties of Γ



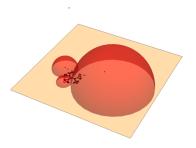
ullet Γ is a hyperbolic reflection group.

Properties of Γ



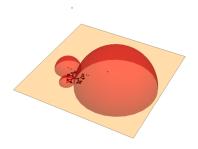
- Γ is a hyperbolic reflection group.
 - ightharpoonup That is, the fundamental domain of Γ has only finitely many sides, and Γ is generated by reflections through those sides.

Properties of Γ



- Γ is a hyperbolic reflection group.
 - ightharpoonup That is, the fundamental domain of Γ has only finitely many sides, and Γ is generated by reflections through those sides.
- Γ is thin.

Properties of Γ



- Γ is a hyperbolic reflection group.
 - That is, the fundamental domain of Γ has only finitely many sides, and Γ is generated by reflections through those sides.
- Γ is thin.
 - That is, it is discrete, Zariski-dense, and the fundamental domain has infinite volume.

General Setting

Definition

An *n-sphere packing* is a collection of at least 3 oriented *n*-spheres such that their interiors do not intersect, and their union (with interiors) is dense in $\mathbb{R}^{n+1} \cup \{\infty\}$.

General Setting

Definition

An *n-sphere packing* is a collection of at least 3 oriented *n*-spheres such that their interiors do not intersect, and their union (with interiors) is dense in $\mathbb{R}^{n+1} \cup \{\infty\}$.

A *crystallographic packing* is an *n*-sphere packing such that its closure is a thin hyperbolic group $\Gamma \subset \text{Isom}(\mathbb{H}^{n+2})$.

General Setting

Definition

An *n-sphere packing* is a collection of at least 3 oriented *n*-spheres such that their interiors do not intersect, and their union (with interiors) is dense in $\mathbb{R}^{n+1} \cup \{\infty\}$.

A *crystallographic packing* is an *n*-sphere packing such that its closure is a thin hyperbolic group $\Gamma \subset \text{Isom}(\mathbb{H}^{n+2})$.

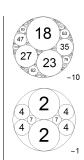
We say a crystallographic packing is integral if all of the bends (1/radius) are integers (possibly after scaling by some constant C > 0).

18 ss 35 27 23 ss -10

Apollonian gasket

Apollonian gasket

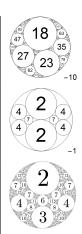
Octahedral packing (Guettler, Mallows 2010)



Apollonian gasket

Octahedral packing (Guettler, Mallows 2010)

Orbits of \mathbb{R} under action of $SL(2, \mathcal{O}_K)$ (Stange 2014, 2015)

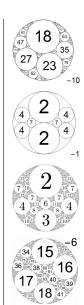


Apollonian gasket

Octahedral packing (Guettler, Mallows 2010)

Orbits of \mathbb{R} under action of $SL(2, \mathcal{O}_K)$ (Stange 2014, 2015)

Geometrizing polyhedra (Kontorovich, Nakamura 2017)



0 20

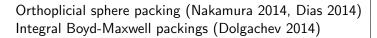
Soddy packing (1936)

Known Constructions for n=2

Soddy packing (1936)

Orthoplicial sphere packing (Nakamura 2014, Dias 2014)

Soddy packing (1936)



???

The Classification/Construction Problem

Question

Are there any other integral crystallographic sphere packings?

The Classification/Construction Problem

Question

Are there any other integral crystallographic sphere packings?

Answer

Yes!

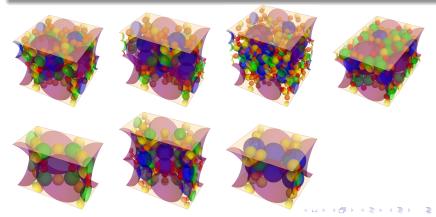
The Classification/Construction Problem

Question

Are there any other integral crystallographic sphere packings?

Answer

Yes!



• How are these constructed?

- How are these constructed?
- We begin by defining a useful associated object that is generally easier to work with.

- How are these constructed?
- We begin by defining a useful associated object that is generally easier to work with.

Definition

Let P be a crystallographic packing. Let Γ be the smallest hyperbolic reflection group stabilizing P.

- How are these constructed?
- We begin by defining a useful associated object that is generally easier to work with.

Definition

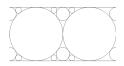
Let P be a crystallographic packing. Let Γ be the smallest hyperbolic reflection group stabilizing P. The $super-group\ \tilde{\Gamma}$ is the smallest subgroup of $Isom(\mathbb{H}^{n+2})$ containing Γ and all reflections through the spheres of P.

- How are these constructed?
- We begin by defining a useful associated object that is generally easier to work with.

Definition

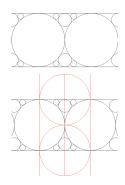
Let P be a crystallographic packing. Let Γ be the smallest hyperbolic reflection group stabilizing P. The $super-group\ \tilde{\Gamma}$ is the smallest subgroup of $Isom(\mathbb{H}^{n+2})$ containing Γ and all reflections through the spheres of P. The super-packing of P is the orbit of P under the action of $\tilde{\Gamma}$.

Example of Super Packing



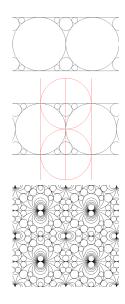
• Start with the crystallographic packing.

Example of Super Packing



- Start with the crystallographic packing.
- Find hyperbolic reflections that map it back to itself.

Example of Super Packing



- Start with the crystallographic packing.
- Find hyperbolic reflections that map it back to itself.
- Look at orbit under super-group.

• If the super-packing has only *n*-spheres of integral bend, then such integral crystallographic packings become possible much easier to classify.

- If the super-packing has only *n*-spheres of integral bend, then such integral crystallographic packings become possible much easier to classify.
- We call such packings *super-integral crystallographic packings*.

- If the super-packing has only *n*-spheres of integral bend, then such integral crystallographic packings become possible much easier to classify.
- We call such packings *super-integral crystallographic packings*.

Theorem (Kontorovich, Nakamura 2017)

If P is a super-integral crystallographic packing, then its super-group is arithmetic.

- If the super-packing has only *n*-spheres of integral bend, then such integral crystallographic packings become possible much easier to classify.
- We call such packings *super-integral crystallographic packings*.

Theorem (Kontorovich, Nakamura 2017)

If P is a super-integral crystallographic packing, then its super-group is arithmetic.

 \bullet So, what we want to do is study arithmetic subgroups of $\mathsf{Isom}(\mathbb{H}^3).$

 A dimension down, this is easy to do due to the accidental isomorphisms

$$\mathsf{Isom}^0(\mathbb{H}^2)\cong SO^0(3,1)\cong PSL(2,\mathbb{C})$$

 $\mathsf{Spin}(3,1)\cong SL(2,\mathbb{C}).$

 A dimension down, this is easy to do due to the accidental isomorphisms

$$\mathsf{Isom}^0(\mathbb{H}^2) \cong SO^0(3,1) \cong PSL(2,\mathbb{C})$$

 $\mathsf{Spin}(3,1) \cong SL(2,\mathbb{C}).$

• We get this isomorphism due to the action of $SL(2,\mathbb{C})$ on \mathbb{C} via Möbius transformations.

 A dimension down, this is easy to do due to the accidental isomorphisms

$$\mathsf{Isom}^0(\mathbb{H}^2)\cong SO^0(3,1)\cong PSL(2,\mathbb{C})$$

 $\mathsf{Spin}(3,1)\cong SL(2,\mathbb{C}).$

- We get this isomorphism due to the action of $SL(2,\mathbb{C})$ on \mathbb{C} via Möbius transformations.
- In \mathbb{R}^3 , we can again use the accidental isomorphism

$$\mathsf{Isom}^0(\mathbb{H}^3) \cong SO^0(4,1) \cong PSL^\ddagger(2,H_\mathbb{R})$$

 $\mathsf{Spin}(3,1) \cong SL(2,H_\mathbb{R}).$

$$H_{\mathbb{R}} = \left(\frac{-1, -1}{\mathbb{R}}\right)$$
 $(w + xi_{\mathbb{R}} + yj_{\mathbb{R}} + zi_{\mathbb{R}}j_{\mathbb{R}})^{\ddagger} = w + xi_{\mathbb{R}} + yj_{\mathbb{R}} - zi_{\mathbb{R}}j_{\mathbb{R}}$
 $H_{\mathbb{R}}^{+} = \left\{\alpha \in H_{\mathbb{R}} \middle| \alpha^{\ddagger} = \alpha\right\}$

$$H_{\mathbb{R}} = \left(\frac{-1, -1}{\mathbb{R}}\right)$$

$$(w + xi_{\mathbb{R}} + yj_{\mathbb{R}} + zi_{\mathbb{R}}j_{\mathbb{R}})^{\ddagger} = w + xi_{\mathbb{R}} + yj_{\mathbb{R}} - zi_{\mathbb{R}}j_{\mathbb{R}}$$

$$H_{\mathbb{R}}^{+} = \left\{\alpha \in H_{\mathbb{R}} \middle| \alpha^{\ddagger} = \alpha\right\}$$

$$egin{aligned} \mathit{SL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) &= \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \middle| a, b, c, d \in \mathit{H}_{\mathbb{R}}, \ ab^{\ddagger} \in \mathit{H}_{\mathbb{R}}^{+}, \ & cd^{\ddagger} \in \mathit{H}_{\mathbb{R}}^{+}, \ ad^{\ddagger} - bc^{\ddagger} = 1
ight\} \ & \mathit{PSL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) &= \mathit{SL}^{\ddagger}(2, \mathit{H}_{\mathbb{R}}) / \{\pm 1\}. \end{aligned}$$

• Given any definite, rational quaternion algebra H and an (orthogonal) involution \ddagger , the group $SL^{\ddagger}(2,H)$ acts on H^+ by Möbius transformations.

• Given any definite, rational quaternion algebra H and an (orthogonal) involution \ddagger , the group $SL^{\ddagger}(2,H)$ acts on H^+ by Möbius transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = (az + b) (cz + d)^{-1}.$$

• Given any definite, rational quaternion algebra H and an (orthogonal) involution \ddagger , the group $SL^{\ddagger}(2,H)$ acts on H^+ by Möbius transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = (az + b) (cz + d)^{-1}.$$

This yields an isomorphism with Spin(4, 1).

• Given any definite, rational quaternion algebra H and an (orthogonal) involution \ddagger , the group $SL^{\ddagger}(2,H)$ acts on H^+ by Möbius transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = (az + b) (cz + d)^{-1}.$$

- This yields an isomorphism with Spin(4, 1).
- We want to look at arithmetic subgroups of such groups.

• Given any definite, rational quaternion algebra H and an (orthogonal) involution \ddagger , the group $SL^{\ddagger}(2,H)$ acts on H^+ by Möbius transformations.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = (az + b) (cz + d)^{-1}.$$

- This yields an isomorphism with Spin(4, 1).
- We want to look at arithmetic subgroups of such groups.
- Specifically, fix a plane $S_j \subset H^+$, and look at its orbit under an arithmetic subgroup $\tilde{\Gamma}$ —we shall want to study whether this is the super-packing of some super-integral crystallographic packing.

• An obvious candidate:

• An obvious candidate: $SL^{\ddagger}(2,\mathcal{O})$, where \mathcal{O} is an order of H.

- An obvious candidate: $SL^{\ddagger}(2,\mathcal{O})$, where \mathcal{O} is an order of H.
- Inverses in $SL^{\ddagger}(2, H)$ are given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

- An obvious candidate: $SL^{\ddagger}(2,\mathcal{O})$, where \mathcal{O} is an order of H.
- Inverses in $SL^{\ddagger}(2, H)$ are given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

• Therefore, we require that $\mathcal{O} = \mathcal{O}^{\ddagger}$.

- An obvious candidate: $SL^{\ddagger}(2,\mathcal{O})$, where \mathcal{O} is an order of H.
- Inverses in $SL^{\ddagger}(2, H)$ are given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

• Therefore, we require that $\mathcal{O} = \mathcal{O}^{\ddagger}$.

Example

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j+ij}{2} \subset \left(\frac{-1,-1}{\mathbb{Q}}\right)$$

$$SL^{\ddagger}(2,\mathcal{O})$$

- An obvious candidate: $SL^{\ddagger}(2,\mathcal{O})$, where \mathcal{O} is an order of H.
- Inverses in $SL^{\ddagger}(2, H)$ are given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} d^{\ddagger} & -b^{\ddagger} \\ -c^{\ddagger} & a^{\ddagger} \end{pmatrix}.$$

• Therefore, we require that $\mathcal{O} = \mathcal{O}^{\ddagger}$.

Example

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j+ij}{2} \subset \left(\frac{-1,-1}{\mathbb{Q}}\right)$$

Non-Example

$$\mathbb{Z} \oplus \mathbb{Z}9i \oplus \mathbb{Z}j \oplus \mathbb{Z}\frac{90 + 385i - 63j + ij}{90} \subset \left(\frac{-1, -5}{\mathbb{Q}}\right)$$

Definition

Given a quaternion algebra H over a local or global field F, with an orthogonal involution \ddagger , we say an order \mathcal{O} of H is a \ddagger -order if $\mathcal{O} = \mathcal{O}^{\ddagger}$.

Definition

Given a quaternion algebra H over a local or global field F, with an orthogonal involution \ddagger , we say an order $\mathcal O$ of H is a \ddagger -order if $\mathcal O = \mathcal O^\ddagger$. If $\mathcal O$ is not contained in any larger \ddagger -order, we say it is a maximal \ddagger -order.

Definition

Given a quaternion algebra H over a local or global field F, with an orthogonal involution \ddagger , we say an order \mathcal{O} of H is a \ddagger -order if $\mathcal{O} = \mathcal{O}^{\ddagger}$. If \mathcal{O} is not contained in any larger \ddagger -order, we say it is a maximal \ddagger -order.

 Maximal ‡-orders are easy to classify over local fields. (Scharlau 1974) (S. 2018)

Definition

Given a quaternion algebra H over a local or global field F, with an orthogonal involution \ddagger , we say an order \mathcal{O} of H is a \ddagger -order if $\mathcal{O} = \mathcal{O}^{\ddagger}$. If \mathcal{O} is not contained in any larger \ddagger -order, we say it is a maximal \ddagger -order.

- Maximal ‡-orders are easy to classify over local fields. (Scharlau 1974) (S. 2018)
- We can mostly reduce to this case via localization.

Definition

Given a quaternion algebra H over a local or global field F, with an orthogonal involution \ddagger , we say an order \mathcal{O} of H is a \ddagger -order if $\mathcal{O} = \mathcal{O}^\ddagger$. If \mathcal{O} is not contained in any larger \ddagger -order, we say it is a maximal \ddagger -order.

- Maximal ‡-orders are easy to classify over local fields. (Scharlau 1974) (S. 2018)
- We can mostly reduce to this case via localization.
- In particular, if we look at orders such that $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1 (we shall call such orders *Heegner orders*), then we can give a complete list.

Heegner Orders

Theorem (S. 2018)

Let $H = \left(\frac{-m,-n}{\mathbb{Q}}\right)$ and $\mathcal O$ a Heegner order. Then $\mathcal O$ is one of the orders given below.

m	\mathcal{O}	Conditions
m=1	$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus rac{1+i+j+ij}{2}$	$if\ n \equiv 1 \mod 4$
	$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2}$	if $n \equiv 2 \mod 4$
	$\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \frac{1+i+j+ij}{2}$ $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}\frac{1+i+j}{2} \oplus \mathbb{Z}\frac{j+ij}{2}$ $\left\{\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}\frac{1+j}{2} \oplus \mathbb{Z}\frac{i+j}{2}\right\}$ $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}\frac{i+j}{2} \oplus \mathbb{Z}\frac{1+ij}{2}$	if $n \equiv -1 \mod 4$

m = 7	$ \begin{vmatrix} \mathbb{Z} \oplus \mathbb{Z} \frac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{j+ij}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{7j+ij}{14} \end{vmatrix} $	if 7 ∤ <i>n</i>
	$\mathbb{Z}\oplus\mathbb{Z}rac{1-i}{2}\oplus\mathbb{Z}j\oplus\mathbb{Z}rac{7ar{j}+ij}{14}$	if 7 <i>n</i>
$m \equiv 3 \mod 8$	$\mathbb{Z}\oplus\mathbb{Z}rac{1+i}{2}\oplus\mathbb{Z}j\oplus\mathbb{Z}rac{j+ij}{2}$	if <i>m</i> ∤ <i>n</i>
	$\mathbb{Z} \oplus \mathbb{Z} rac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} rac{mj+ij}{2m}$	if $m n$ and $\left(rac{n/m}{m} ight)=1$
		if $m n$ and $\left(\frac{n/m}{m}\right)=-1$

(Here t is chosen such that $t^2 + n/m \equiv 0 \mod m$.)

• Why should we care whether $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1?

- Why should we care whether $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1?
- If not, $SL^{\ddagger}(2,\mathcal{O})$ does not act transitively on the set of rational points of S_i .

- Why should we care whether $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1?
- If not, $SL^{\ddagger}(2,\mathcal{O})$ does not act transitively on the set of rational points of S_j .
- This problem does not appear a dimension down, and can give strange counter-examples.

- Why should we care whether $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1?
- If not, $SL^{\ddagger}(2,\mathcal{O})$ does not act transitively on the set of rational points of S_j .
- This problem does not appear a dimension down, and can give strange counter-examples.

Definition

If \mathcal{O} is a maximal ‡-order such that $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1, we call it a *Heegner order*.

- Why should we care whether $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1?
- If not, $SL^{\ddagger}(2,\mathcal{O})$ does not act transitively on the set of rational points of S_j .
- This problem does not appear a dimension down, and can give strange counter-examples.

Definition

If \mathcal{O} is a maximal ‡-order such that $\mathcal{O} \cap \mathbb{Q}(i)$ has class number 1, we call it a *Heegner order*. If, furthermore, \mathcal{O} is invariant under the map

$$w + xi + yj + zij \mapsto w + xi - yj + zij$$
,

we call it a symmetric Heegner order.

• Let \mathcal{O} be a symmetric Heegner order. Let $\mathcal{S}_{\mathcal{O},j}$ be the orbit of the plane S_j under the action of $SL^{\ddagger}(2,\mathcal{O})$. Then

- Let \mathcal{O} be a symmetric Heegner order. Let $\mathcal{S}_{\mathcal{O},j}$ be the orbit of the plane S_j under the action of $SL^{\ddagger}(2,\mathcal{O})$. Then
 - ▶ intersections between spheres in $S_{\mathcal{O},j}$ are rational,

- Let \mathcal{O} be a symmetric Heegner order. Let $\mathcal{S}_{\mathcal{O},j}$ be the orbit of the plane \mathcal{S}_j under the action of $SL^{\ddagger}(2,\mathcal{O})$. Then
 - ▶ intersections between spheres in $S_{\mathcal{O},i}$ are rational,
 - ▶ intersections are tangential if the action of \mathcal{O}^{\times} preserves S_i .

- Let \mathcal{O} be a symmetric Heegner order. Let $\mathcal{S}_{\mathcal{O},j}$ be the orbit of the plane \mathcal{S}_j under the action of $SL^{\ddagger}(2,\mathcal{O})$. Then
 - ▶ intersections between spheres in $S_{\mathcal{O},j}$ are rational,
 - intersections are tangential if the action of \mathcal{O}^{\times} preserves S_i .
- Furthermore, let $E^{\ddagger}(2,\mathcal{O})$ be the smallest group containing $SL(2,\mathcal{O}\cap\mathbb{Q}(i))$ and

$$\begin{pmatrix} u & 0 \\ 0 & u^{\ddagger - 1} \end{pmatrix}, \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$$

for all $u \in \mathcal{O}^{\times}$, $h \in \mathcal{O} \cap H^+$.

- Let \mathcal{O} be a symmetric Heegner order. Let $\mathcal{S}_{\mathcal{O},j}$ be the orbit of the plane S_j under the action of $SL^{\ddagger}(2,\mathcal{O})$. Then
 - ▶ intersections between spheres in $S_{\mathcal{O},j}$ are rational,
 - intersections are tangential if the action of \mathcal{O}^{\times} preserves S_i .
- Furthermore, let $E^{\ddagger}(2,\mathcal{O})$ be the smallest group containing $SL(2,\mathcal{O}\cap\mathbb{Q}(i))$ and

$$\begin{pmatrix} u & 0 \\ 0 & u^{\ddagger - 1} \end{pmatrix}, \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$$

for all $u \in \mathcal{O}^{\times}$, $h \in \mathcal{O} \cap H^+$.

Then there is a bijection

$$SL^{\ddagger}(2,\mathcal{O})/E^{\ddagger}(2,\mathcal{O}) \rightarrow \{\text{tangency-connected components of } \mathcal{S}_{\mathcal{O},j}\}\$$

 $\gamma E^{\ddagger}(2,\mathcal{O}) \mapsto \gamma E^{\ddagger}(2,\mathcal{O}) \hat{S}_{j}$

• Putting this together, we can enumerate all sets $S_{\mathcal{O},j}$ that are candidates for being (tangency-connected) superpackings.

• Putting this together, we can enumerate all sets $S_{\mathcal{O},j}$ that are candidates for being (tangency-connected) superpackings.

Theorem (S. 2018)

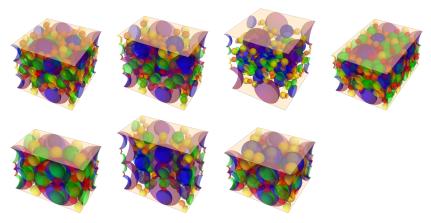
The sphere collection $S_{\mathcal{O},j}$ is integral, tangential, dense, and tangency-connected for only a finite number of isomorphism classes of H, \mathcal{O} , given below.

$$\begin{array}{c|c} H & \mathcal{O} \\ \hline \begin{pmatrix} -1, -6 \\ \mathbb{Q} \end{pmatrix} & \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2} \\ \begin{pmatrix} -1, -7 \\ \mathbb{Q} \end{pmatrix} & \begin{cases} \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{i+ij}{2} \\ \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+j}{2} \oplus \mathbb{Z} \frac{1+ij}{2} \\ \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{1+ij}{2} \\ \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{1+ij}{2} \\ \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+i+j+j}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{1+i+j+j}{2} \\ \mathbb{Z} \oplus \mathbb{Z} \mathbb{Z} \oplus \mathbb{Z} \mathbb{Z} \oplus \mathbb{Z} \mathbb{Z} \oplus \mathbb{Z} \mathbb{Z}$$

The two sphere collections over $\left(\frac{-1,-7}{\mathbb{Q}}\right)$ are conformally equivalent—all other collections are conformally inequivalent.

• This yields the following potential superpackings.

• This yields the following potential superpackings.



Question

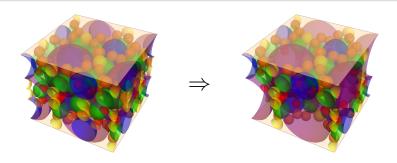
Are these actually superpackings of integral crystallographic packings?

Question

Are these *actually* superpackings of integral crystallographic packings? Yes!

Question

Are these *actually* superpackings of integral crystallographic packings? Yes!



Theorem (S. 2018)

The sphere collections $\mathcal{S}_{\mathcal{O},j}$ corresponding to maximal ‡-orders

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2} \quad \subset \begin{pmatrix} -1,-6 \\ \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+j}{2} \oplus \mathbb{Z} \frac{i+ij}{2} \quad \subset \begin{pmatrix} -1,-7 \\ \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{j+ij}{2} \quad \subset \begin{pmatrix} -1,-10 \\ \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{1+i+j}{2} \oplus \mathbb{Z} \frac{i+ij}{2} \quad \subset \begin{pmatrix} -2,-5 \\ \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Z} \oplus \mathbb{Z} \frac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{j+ij}{2} \quad \subset \begin{pmatrix} -3,-1 \\ \mathbb{Q} \end{pmatrix}$$

$$\mathbb{Z} \oplus \mathbb{Z} \frac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{j+ij}{2} \quad \subset \begin{pmatrix} -3,-2 \\ \mathbb{Q} \end{pmatrix}$$

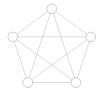
$$\mathbb{Z} \oplus \mathbb{Z} \frac{1+i}{2} \oplus \mathbb{Z} j \oplus \mathbb{Z} \frac{j+ij}{2} \quad \subset \begin{pmatrix} -7,-1 \\ \mathbb{Q} \end{pmatrix}$$

are the superpackings of super-integral crystallographic packings $\mathcal{P}_{\mathcal{O},j}$.

 \bullet The packing corresponding to $\left(\frac{-1,-6}{\mathbb{Q}}\right)$ is the Maxwell-Boyd packing corresponding to the Coxeter diagram

• The packing corresponding to $\left(\frac{-1,-6}{\mathbb{Q}}\right)$ is the Maxwell-Boyd packing corresponding to the Coxeter diagram

• The packing corresponding to $\left(\frac{-3,-1}{\mathbb{Q}}\right)$ is the Maxwell-Boyd packing corresponding to the Coxeter diagram



• The packing corresponding to $\left(\frac{-1,-6}{\mathbb{Q}}\right)$ is the Maxwell-Boyd packing corresponding to the Coxeter diagram

• The packing corresponding to $\left(\frac{-3,-1}{\mathbb{Q}}\right)$ is the Maxwell-Boyd packing corresponding to the Coxeter diagram

 All other packings are non-conformal to any known (to me) integral crystallographic packings.